Objectives
SHINE is focused around the design and implementation of an end-to-end secure infrastructure for the delivery of multimedia content over integrated satellite-terrestrial networks.
The overall security architecture of the SHINE project is comprised of two main building blocks:
a satellite-enabled broadcast distribution backbone leveraging network and a MPEG-DASH/WebRTC-enabled edge distribution network.
In-between such building blocks lies a middle layer associated with the secure storage of cached multimedia content chunks.
Challenges
Define an end-to-end security architecture for hybrid satellite-terrestrial networks allowing for the effective transmission of multimedia content;
Study the applicability of Network Coding techniques to real-world application scenarios;
Evaluate the effectiveness of the upcoming WebRTC (Web Real Time Communications) standard when applied to the streaming of multimedia content;
Perform a comparative analysis between MPEG-DASH and WebRTC, taking into account both performance and security features.
Benefits
The project SHINE designs innovative mechanisms for the protection from unauthorized access to content-related data, as well as for the secure distribution of real-time multimedia information across hybrid channels leveraging both the unicast and the multicast communication paradigm. With respect to this last point, we propose a novel “combined coding” technique targeting the optimization of multicast-enabled transmissions in the presence of caching.
More precisely, we leverage cutting-edge solutions for decentralized random caching which, combined with an original content distribution technique based on coded multicast, allows us to attain “order-optimal” performance.
Bearing in mind the articulated structure of the overall content distribution network, which comprises both the satellite-enabled broadcasting trunks (allowing to properly populate edge caches) and the last-mile access networks, we also look after secure, privacy-enhanced, adaptive delivery to the end-users of the contents stored inside edge caches. For this last part we leverage (and improve) state-of-the art solutions coming from the most prominent standardization communities in the field of real-time communications in the Internet.
Features
Within the former part of the network, we rely on network coding in order to define a coded multicast technique allowing us to improve both performance and security of communications.
At the edges of the distribution network, which also act as in-network caches, we instead leverage cutting-edge streaming technologies (namely, MPEG-DASH and/or WebRTC) in order to optimize content distribution towards the end users of the network, and we look after both performance and security.
System Architecture
SHINE’s architecture is reported in the picture below.
The picture highlights the main logical components of the architecture: a source encoder block, , the core satellite-enabled communication infrastructure, and two different “flavours” of edge access networks (WebRTC-enabled access network, an MPEG-DASH enabled access network).
Plan
The project starts by identifying the main usage scenarios,
we then move to the specification of the overall architecture for the secure delivery of multimedia content in a hybrid satellite-terrestrial network environment.
Work is conducted by embracing an engineering approach, which brings to the definition of a testbed for the practical demonstration of satellite-assisted in-network caching scenarios.
Current status
The project started in February 1st 2017, and it successfully ended in 2019.
Official link to the project: https://connectivity.esa.int/projects/shine-secure-hybrid-network-caching-environment